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Abstract. In this note, we explore the implications of a result that suggests that the duality gap
caused by a Lagrangian relaxation of the nonanticipativity constraints in a stochastic mixed integer
(binary) program diminishes as the number of scenarios increases. By way of an example, we
illustrate that this is not the case. In general, the duality gap remains bounded away from zero.

1. Introduction

Stochastic integer programming problems arise in a variety of applications in which
integer and combinatorial optimization problems are formulated in the presence of
uncertainty. Examples of such applications arise in stochastic scheduling (Birge
and Dempster, 1996), stochastic vehicle routing (Dror et al., 1989) and others
(Dentcheva and Römisch, 1998); Carøe and Schultz, 1998). As one might ex-
pect, this class of problems inherits many of the difficulties associated with both
stochastic linear programs and deterministic integer programs. As a result, for all
but the smallest of instances, heuristic methods often provide the only practical
approaches to these problems. One heuristic approach that is gaining in popularity
combines a sample-based method with Lagrangian relaxation. The motivation for
this approach lies in a result of Birge and Dempster (1996), where it is shown
that for some problems, as the size of the sample space increases, the duality gap
between a mixed integer 0-1 stochastic programs and a certain Lagrangian dual
vanishes (see also Takriti, Long and Birge, 1996). One might be tempted to con-
jecture that this result might hold for stochastic integer programs allowing general
integer variables. However, Carøe (1998) has provided a counterexample illustrat-
ing that the result cannot be extended to stochastic integer programs with general
integer variables. Indeed, as shown below, the notion that the duality gap vanishes
with an increasing sample space is erroneous even for 0-1 stochastic programs.
Given the deep implications of Birge and Dempster (1996), our (negative) example
is somewhat of a disappointment.
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Table 1. Scenario constraints and their binary solutions

Scenario Constraints Binary solutions

s=1 2x11 + x21 6 2 and (x11, x21) ∈ {(0,0), (1,0)}
2x11 − x21 > 0

s=2 x12− x22> 0. (x12, x22) ∈ {(0,0), (1,0), (1,1)}
s=3 x13+ x236 1 (x13, x23) ∈ {(0,0), (0,1), (1,0)}

2. Example

We begin our discussion with an example in which there are only three scenarios.
We will verify that for this particular problem, the duality gap is strictly positive.
We will then increase the size of the sample space in a manner that is consistent
with the hypotheses of Birge and Dempster (1996), and verify that the gap remains
bounded away from zero.

Consider a two-stage stochastic program with three equally likely scenarios,
indexed bys ∈ S = {1,2,3}. In this example, one has to determine the value of
two decision variables for each scenario:(x1s, x2s), s ∈ S. Within our example, the
variables{xls}s∈S are ‘first stage’ variables, and thus are required to be constant
across all scenarios (i.e., nonanticipative). The remaining variables,{x2s}s∈S are
‘second stage’ variables, and thus are permitted to vary by scenario. Since the focus
of our example is on binary decision variables, we will impose a binary restriction
on all variables. Data associated with each of the scenarios is given in Table 1.

With all scenarios equally likely, and the objective of maximizing the expected
value of the second stage variable, we have the following formulation.

Max 1/3x21 +1/3x22 +1/3x23

s.t. 2x11 +x21 6 2 (1a)

2x11 −x21 > 0 (1b)

x12 −x22 > 0 (2)

x13 +x23 6 1 (3)
2
3x11 −1

3x12 −1
3x13 =0 (4)

xis ∈ {0,1} i = 1,2 ∀s ∈ S
The optimal value associated with this stochastic integer program is 1/3. Within

the formulation, constraints (1)–(3) are those that are identified in Table 1. Con-
straint (4) is obtained from:

x11− {1/3x11+ 1/3x12+ 1/3x13} = 0,

and is known as a nonanticipativity constraint. As a result of the binary restrictions,
it is clear thatx11 can take the value 0 or 1 if, and only if, all of the first stage
variables are equal to it. As we extend our example to include an increasing number
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of scenarios, the binary restrictions ensure that we may continue to represent the
nonanticipativity requirements with a single constraint of this type.

Note that in the absence of the nonanticipativity restriction, (4), the stochastic
integer program is separable by scenario. With this observation, the Birge and De-
mpster (1996) result revolves around the Lagrangian relaxation of this constraint.
For notational convenience, letXs denote the set of solutions specific to scenario
s, including the binary restrictions. Thus, for example

X3 = {(x13, x23) : x13+ x23 6 1, xi3 ∈ {0,1}, i = 1,2}
= {(0,0), (0,1), (1,0)}.

Then we may rewrite the problem as:

Max
3∑
s=1

1

3
x2s

s.t.(x1s , x2s) ∈ Xs ∀s ∈ S
2

3
x11−

3∑
s=2

1

3
x1s = 0

Relaxing the nonanticipativity constraint, let

D(λ) = Max(x1s ,x2s )∈Xs, ∀s∈S
{

2λ

3
x11+ 1

3
x21− λ

3
x12+ 1

3
x22− λ

3
x13+ 1

3
x23

}
= Max(x11,x21)∈X1

{
2

3
λx11+ 1

3
x21

}
+Max(x12,x22)

{
−1

3
λx12+ 1

3
x22

}
+

Max(x13,x23)∈X3

{
−1

3
λx13+ 1

3
x23

}
Using the solution sets provided in Table 1, we have

D(λ) = Max {0,2λ/3} +Max{0, (−λ+ 1)/3} +Max {1/3,−λ/3}
or equivalently:

D(λ) =


1
3 − 2

3λ λ ≤ −1
2
3 − 1

3λ −1≤ λ ≤ 0
2
3 + 1

3λ 0≤ λ ≤ 1
1
3 + 2

3λ 1≤ λ
Graphically, we may depict this as shown in Figure 1.

The dual problem,

MinλD(λ)

has an optimal value of 2/3, which is achieved atλ=0. Given a primal value of 1/3,
we note the presence of a duality gap.

Note that our example satisfies the conditions of the result in question; that is,
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Figure 1. The dual objective function.

• Xs is compact for alls ∈ S
• The primal objective function is continuous
• Xs includes all scenario specific feasibility conditions (including the binary

restrictions). As such, the extreme points of its convex hull are explicitly
integer solutions

Under these conditions, the result being studied suggests that if all scenarios
occur with equal probability, then as‖S‖ → ∞ the duality gap diminishes to zero.
We will adapt our example to show that, in fact, this isnot the case.

Suppose now that instead of 3 scenarios, we have 3k scenarios, each occurring
with equal probability. Suppose further that the scenario specific constraints are as
follows:

For s ∈ {1, . . . , k},
Xk
s ={(x1s, x2s) : (2− εs)x1s − x2s > 0, (2− εs)x1s +

x2s 6 (2− εs), xis ∈ {0,1}, i = 1,2}
For s ∈ {k + 1, . . . ,2k},

Xk
s = {(x1s, x2s) : x1s − x2s > −εs, xis ∈ {0,1}}

For s ∈ {2k + 1, . . . ,3k},
Xk
s = {(x1s, x2s) : x1s + x2s 6 1+ εs, xis ∈ {0,1}}

whereεs = 1/2s for s = 1, . . . ,3k.
We may formulate this problem as:

Max
3k∑
s=1

1

3k
x2s

s.t.(x1s , x2s) ∈ Xk
s s = 1, . . . ,3k(

1− 1

3k

)
x11−

3k∑
k=2

1

3k
x1s = 0. (5)
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As before, the nonanticipativity constraint, (5), is derived from:

x11−
3k∑
s=1

1

3k
x1s = 0.

Note that although the constraint coefficients have been slightly perturbed, the
binary solutions remain the same as those previously identified. That is,

Xk
s =

 X1 s = 1, . . . , k
X2 s = k + 1, . . . ,2k
X3 s = 2k + 1, . . . ,3k.

As such, the primal objective value remains 1/3 for all values ofk ≥ 1. To invest-
igate the duality gap, the dual problem is given by:

Dk(λ) =Max(x1,x2)∈X1

{(
1− 1

3k

)
λx1 + 1

3k
x2

}
+ (k − 1) Max (x1,x2)∈X1

{−λ
3k
x1 + 1

3k
x2

}
+ k Max (x1,x2)∈X2

{−λ
3k
x1 + 1

3k
x2

}
+ k Max (x1,x2)∈X3

{−λ
3k
x1 + 1

3k
x2

}
=Max

{
0,

(
1− 1

3k

)
λ

}
+ (k − 1)Max

{
0,
−λ
3k

}
+ k Max

{
0,

1

3k
+ −λ

3k

}
+ k Max

{
1

3k
,
−λ
3k

}
=Max

{
0,

(
1− 1

3k

)
λ

}
+Max

{
0,−

(
1

3
− 1

3k

)
λ

}
+Max

{
0,

1

3
− λ

3

}
+Max

{
1

3
,
−λ
3

}
That is,

Dk(λ) =


1
3 −

(
1− 1

3k

)
λ λ ≤ −1

2
3 −

(
2
3 − 1

3k

)
λ −1≤ λ ≤ 0

2
3 +

(
2
3 − 1

3k

)
λ 0≤ λ ≤ 1

1
3 +

(
1− 1

3k

)
λ 1≤ λ

Independent ofk,D(λ) is minimized atλ = 0, with a dual objective value of 2/3.
With a primal objective value of 1/3 for all values ofk, we note the persistence of
the duality gap of 1/3 ask increases, thereby contradicting the suggestion that the
duality gap vanishes ask increases.

3. Conclusion

Given the counterexample, the question arises as to the nature of the error in Birge
and Dempster (1996), who use the result due to Bertsekas (1982) (see Proposition
5.26) for the proof of their Theorem 6. When the linking constraints are of the form∑

s Hsxs ≤ b, Bertsekas’ result requires that for everys,

∀ x′ ∈ conv(Xs)∃x ∈ X such thatHsx ≤ Hsx′. (6)

Theorem 6 of Birge and Dempster hypothesizes the same condition for linking
constraints that are equalities. When the linking constraints are equalities, the ana-
logous condition would replace the inequality in (6) with an equality. However,
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the implications of the nonanticipativity constraints of stochastic integer programs
essentially require thatXs equals its convex hull. This cannot be satisfied unless
the variables restricted to be integers inXs have only one feasible value inXs.
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